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A typical MRI Scanner



The origin of MRI signal

• Nuclei with odd atomic weights/numbers possess spin(J)
• Nuclear magnetism: Spin system in a magnetic field

-Proton has electrical charges
-Rotates about its own axis if it has non-zero spin

γ- Gyromagnetic ratio
µ-magnetic moment
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Nuclear magnetic moments (µ)

• A vector whose magnitude is given by 
-h-Planck’s constant

• The direction of  µ is determined by the main magnetic field (B0) 
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Role of hardware in Imaging

Hardware Imaging parameter

The magnet Signal to Noise (SNR)

Gradient coils Fourier data acquisition

RF Antenna Role in data acquisition

• Magnet-Intrinsic SNR- Indispensable to sparse signal recovery
• Gradient coils- k-space acquisition-Limits acquisition speed
• RF Antennas- Important role in sparse signal recovery



Intrinsic SNR

• Intrinsic SNR is the ratio of the signal from the magnetization M to the signals

produced by thermally generated noise currents
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Intrinsic SNR

•k - Boltzmann constant
•T- Absolute temperature in degree Kelvin
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Intrinsic SNR

Therefore, 2

0BS 

But we also know1, 00 BvBv ts  ,

Therefore at high field strengths, Intrinsic SNR 0B
v

S

s



1. D. I. HOULTA ND P. C. LAUTERBUR J., Magn. Reson. 34,425 (1 979).



The objective of Accelerated MRI is to 
minimize data acquisition time..



The signal acquisition model

dxdyeeyxMyxStts
xtGiytGi

ly
xyy  

 ),(),(),(

• M – Magnetization distribution in x-y plane 
• ty – phase encoding gradient on-time
• t – Frequency encoding gradient on time
• Gy- phase encoding gradient amplitude
• Gx- Frequency encoding gradient amplitude
• Sl - Signal weighting by the lth RF antenna
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Signal sampling requirements..
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Image resolution and sampling…
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Phase
Direction

Frequency Direction
One line of k-space
acquired per TR

Rectilinear acquisition

Phase
Encode

DAQ

Sampled
Signal
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Undersampling (Rectilinear Acquisition)

½ encodes ¼ encodes
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k-Space Acquisition (Radial Sampling)
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Accelerated 2D Radial Sampling
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Trade-offs

• Image Resolution 

• Signal to Noise ratio (SNR)

• Acquisition Time



Resolution Vs. Acquisition time
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Double the resolution -> Double the time 



SNR-When resolution is fixed

• Consider an Impulse object centered at origin
-Constant signal amplitude ‘A’ in k-space
-Each sample contains independent noise with variance σ2
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By simply adding samples

• The effect of signal averaging-SNR improvement

NN

N

j

N

N

j NA

N

NA
A

SNR




2

2

2

2

2

2

1

2

1









avgNSNR



SNR-Accelerated scan-fixed resolution
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• In general- In an accelerated scan with image resolution fixed

•Acceleration factor of 2-collect N/2 samples



Undersampling (Rectilinear Acquisition)

½ encodes – 30% lower SNR ¼ encodes -50% lower SNR
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SNR  -When Resolution is not fixed

Wy

Wx

y

x

Δy

Δx

zyxSNR 

 T2T1,),,,( zyxMF
R

N
zyxSNR 

SNR – Resolution Vs Acquired samples Vs Acceleration factor



To summarize..

Acquired data Resolution  SNR  Acceleration

Acquired data    Resolution  SNR  Acceleration

Acquired data    Resolution  SNR  Acceleration

Acquired data    Resolution  SNR  Acceleration

Acquired data    Resolution  SNR  Acceleration

• Increasing intrinsic SNR can allow for greater acceleration factor



Parallel Imaging, Compressed Sensing 
and Aliased k-space acquisitions



Parallel Imaging

Acquired data Resolution  SNR  Acceleration

Acquired data    Resolution  SNR  Acceleration



Impact of coil sensitivity profiles

Copper coils



Impact of coil sensitivity profiles
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Parallel Imaging-SENSE1

    rsS ,

  HH SSSU
1



UaV 

γth Receiver sensitivity value at the rp location

Matrix that can restore the original voxels

The equation to solve to restore original image

These equations work only for Rectilinear acquisitions!

[2]. Pruessmann et  al. Magnetic Resonance in Medicine 42:952–962 (1999)



What about for Radial Sampling ?
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SENSE in more general terms..
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mEv  m - Undersampled k-space data

  mEEEv hh v – Unaliased image



Noise propagation in SENSE

• SNR loss during acquisition
R

SNR
1
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During reconstruction…

R=2 R=3



Noise propagation in SENSE
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Noise propagation in SENSE

• SNR loss during acquisition
R

SNR
1



During rectilinear data reconstruction…

R=2 R=3



The noise propagation model
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Rearranging the variance equation, we get the following noise matrix (X):
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Limitations of Parallel Imaging

• Guaranteed SNR loss during acquisition and reconstruction

• Limits on the maximum acceleration 

• Demanding Clinical applications need more acceleration



Compressive Sensing

Acquired data Resolution  SNR  Acceleration

Acquired data    Resolution  SNR  Acceleration



Compressed Sensing example

CS

Noise like aliasing artifacts



Idea behind random under-sampling?
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CS reconstruction framework
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Data consistency

In MRI…TV transformation is always used..
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Sparse representation of MRI Images3

[3]. Lustig et  al. Magnetic Resonance in Medicine 58(6):1182–1195 (2007)



Phase
Direction

Frequency Direction
One line of k-space
acquired per TR

2D Rectilinear acquisition with CS?
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Conventional Rectilinear undersampling?

½ encodes ¼ encodes
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What about for Radial Sampling ?
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ky
½ projections ¼ projections



Limitations of Compressed Sensing

• Guaranteed SNR loss during acquisition

• Limits on the maximum acceleration 

• Texture loss!

• Not applicable for all acquisitions (3D, Dynamic imaging most suitable)

• Compatibility with multi-receiver acquisitions not clear

• Visually improved or real restoration?



Aliased k-space acquisitions

Acquired data    Resolution  SNR  Acceleration

Can resolution be restored during reconstruction?



An example of overlapping k-space4

Increase in voxel size!

• All data acquired through overlapping
• Acceleration achieved due to parallel acquisition of k-space data
• Acquisition SNR increase due to voxel size increase

[4].Arunachalam . Early view. Magnetic Resonance in Medicine



Aliased k-space acquisitions
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mEv  m – Aliased  k-space data

  mEEEv hh v – Unaliased image



SNR gain in “aliased” acquisitions

• Consider an Impulse object centered at origin
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Limitations of Aliased k-space 
acquisitions

• Poorly conditioned encoding matrix E

• Sensitive to coil geometry

• Required several receivers

• Increase TR duration



To summarize..

• Parallel Imaging in commercial scanners as a clinical imaging product

• Compressed Sensing – work in progress..

• Aliased k-space acquisitions – Undergoing clinical investigations..

• Use of receiver sensitivities proven technology

• Sparsity constraints unpredictable – Sampling patterns need development


