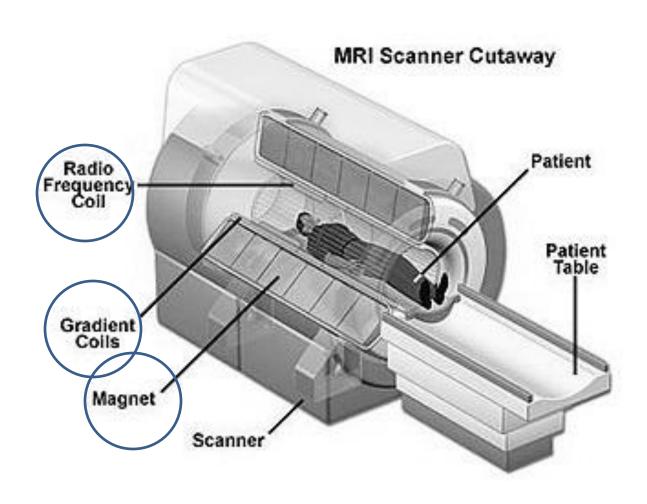
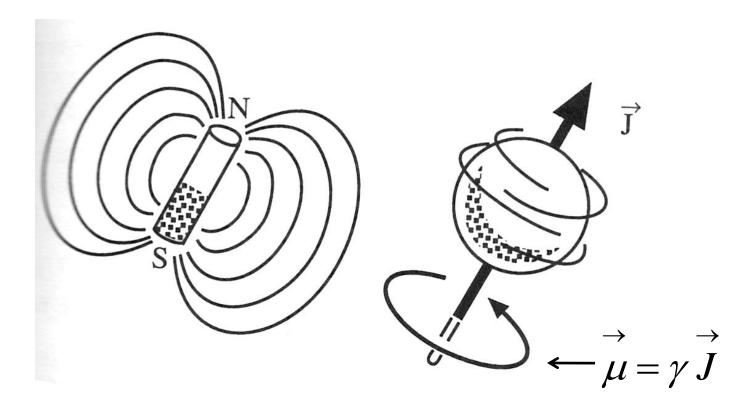
Introduction to Accelerated Magnetic Resonance Imaging

Arjun Arunachalam Consultant, Philips

A typical MRI Scanner



The origin of MRI signal

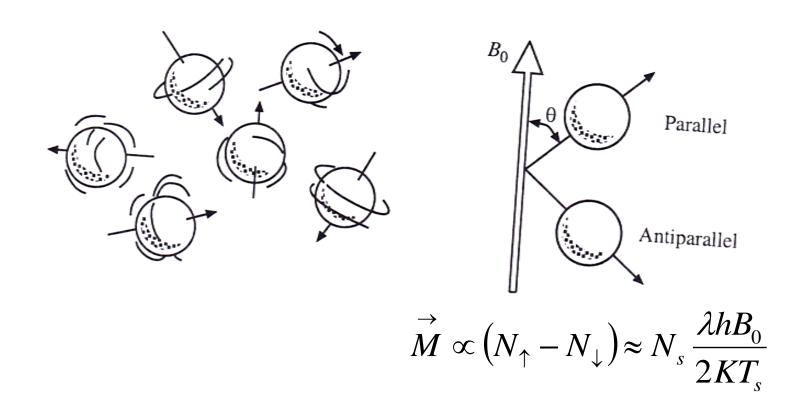


- Nuclei with odd atomic weights/numbers possess <u>spin(J)</u>
- Nuclear magnetism: Spin system in a magnetic field
 - -Proton has electrical charges
 - -Rotates about its own axis if it has non-zero spin

 γ - Gyromagnetic ratio μ -magnetic moment

Nuclear magnetic moments (μ)

- A vector whose magnitude is given by $\gamma = \sqrt{h(h+1)}$ -h-Planck's constant
- The direction of μ is determined by the main magnetic field (B₀)



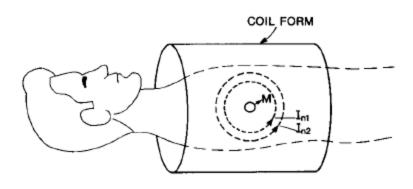
Role of hardware in Imaging

Hardware	Imaging parameter		
The magnet	Signal to Noise (SNR)		
Gradient coils	Fourier data acquisition		
RF Antenna	Role in data acquisition		

- Magnet-Intrinsic SNR- Indispensable to sparse signal recovery
- Gradient coils- k-space acquisition-Limits acquisition speed
- RF Antennas- Important role in sparse signal recovery

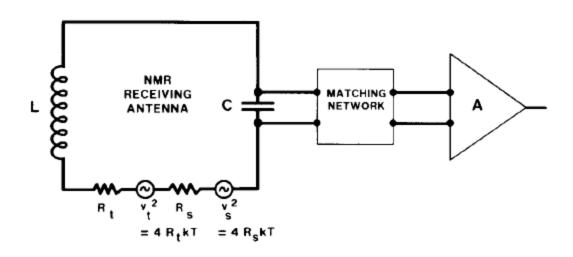
Intrinsic SNR

• Intrinsic SNR is the ratio of the signal from the magnetization M to the signals produced by thermally generated noise currents



$$\stackrel{
ightarrow}{M} \propto B_0$$

Intrinsic SNR



- •k Boltzmann constant
- •T- Absolute temperature in degree Kelvin

$$S \propto \frac{dM}{dt} \propto \omega M$$
 and $\omega = \gamma B_0, M \propto B_0$

Intrinsic SNR

Therefore,

$$S \propto B_0^2$$

But we also know¹,
$$v_s \propto B_0$$
, $v_t \propto \sqrt{B_0}$

Therefore at high field strengths, Intrinsic SNR

$$\frac{S}{v_s} \propto B_0$$

The objective of Accelerated MRI is to minimize data acquisition time..

The signal acquisition model

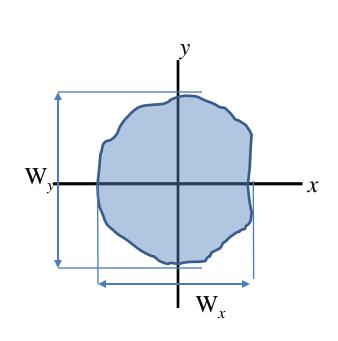
$$s(t,t_y) = \iint S_l(x,y)M(x,y)e^{-i\gamma G_y yt_y}e^{-i\gamma G_x xt}dxdy$$

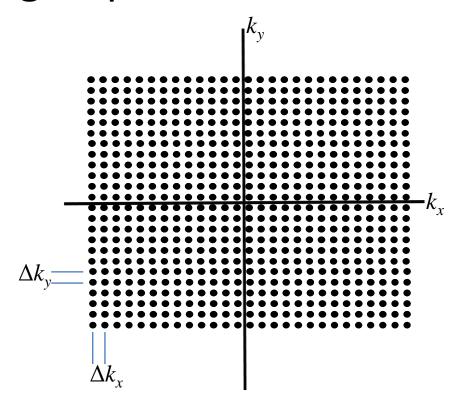
- M Magnetization distribution in x-y plane
- t_v phase encoding gradient on-time
- t Frequency encoding gradient on time
- ${}^{ullet} G_v^{-}$ phase encoding gradient amplitude
- G_x- Frequency encoding gradient amplitude
- S₁ Signal weighting by the Ith RF antenna

$$F(k_x, k_y) = \iint S_l(x, y) M(x, y) e^{-i2\pi k_y y} e^{-i2\pi k_x x} dx dy$$

$$k_{x} = \left(\frac{\gamma}{2\pi}\right) G_{x} t \qquad k_{x} = \left(\frac{\gamma}{2\pi}\right) G_{y} t_{y}$$

Signal sampling requirements...

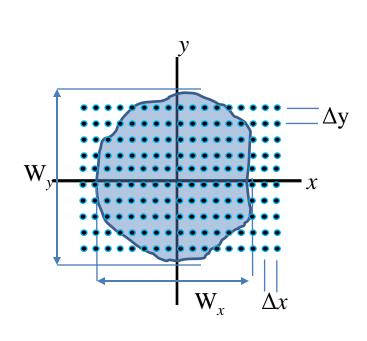




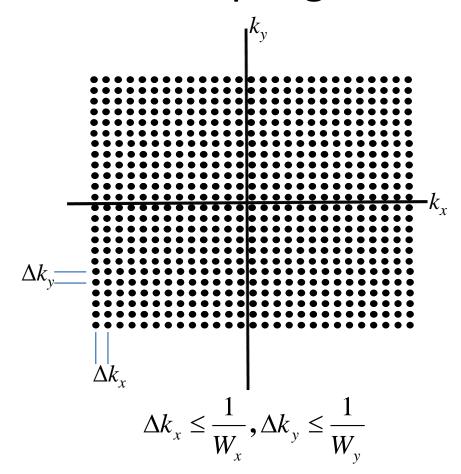
$$\Delta k_{x} = \left(\frac{\gamma}{2\pi}\right) G_{x} \Delta t \qquad \Delta k_{y} = \left(\frac{\gamma}{2\pi}\right) \Delta G_{y} t_{y}$$

$$\Delta k_{x} \le \frac{1}{W_{x}}, \Delta k_{y} \le \frac{1}{W_{y}}$$

Image resolution and sampling...

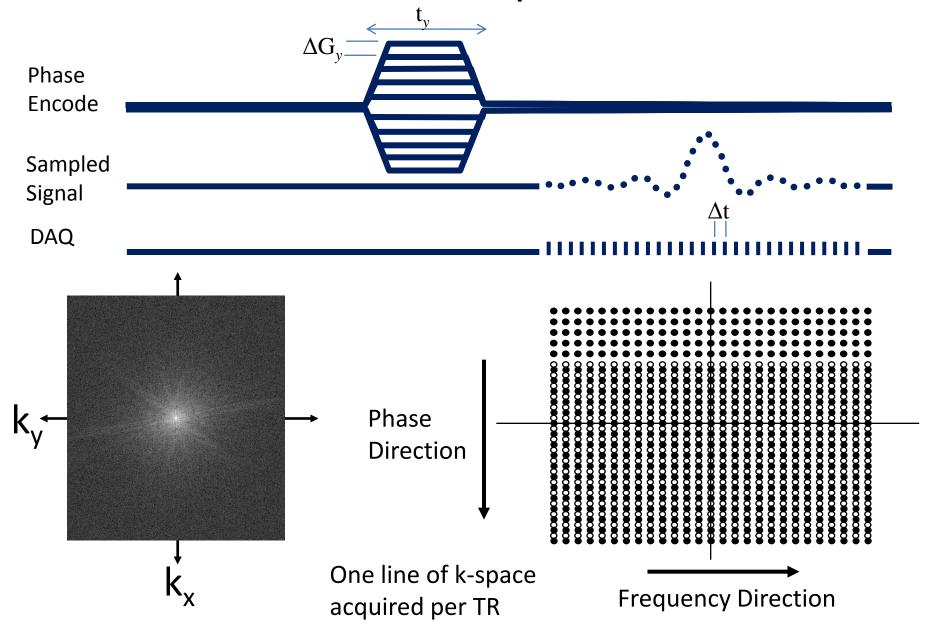


$$\Delta x = \frac{W_x}{N}, \Delta y = \frac{W_y}{N}$$

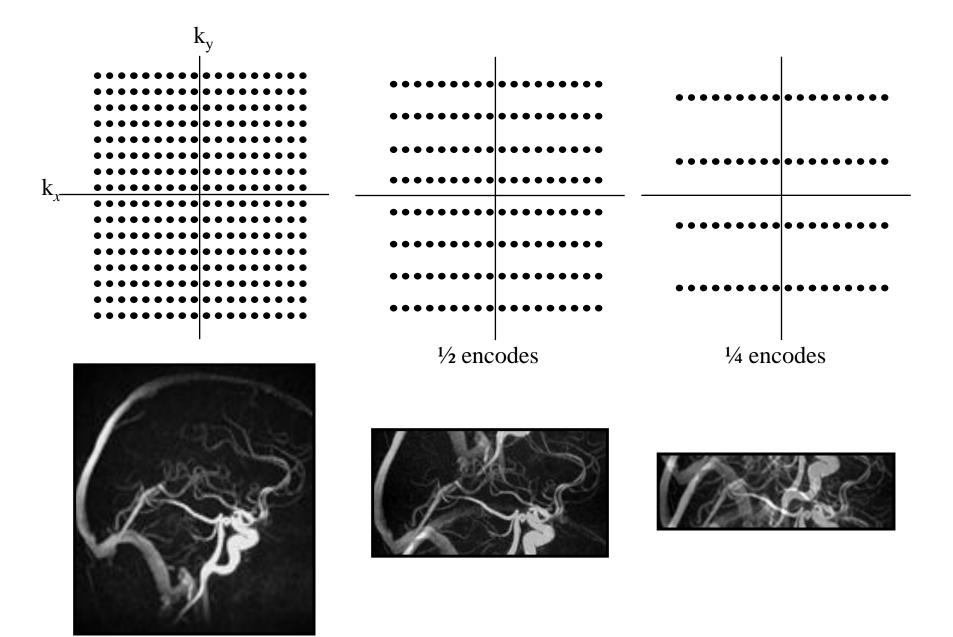


$$\Delta x = \frac{1}{N\Delta k_x}, \Delta y = \frac{1}{N\Delta k_y}$$

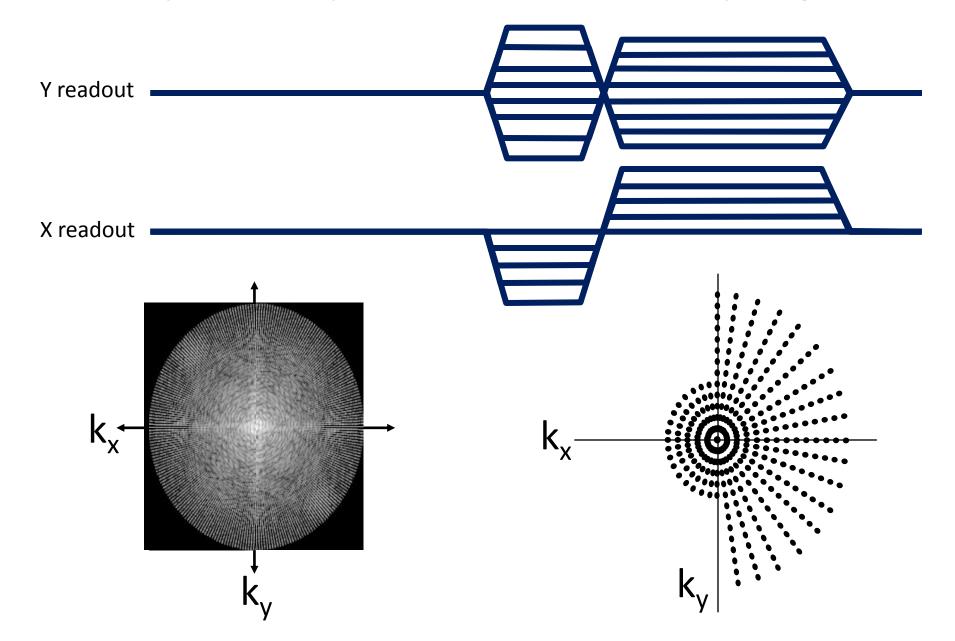
Rectilinear acquisition



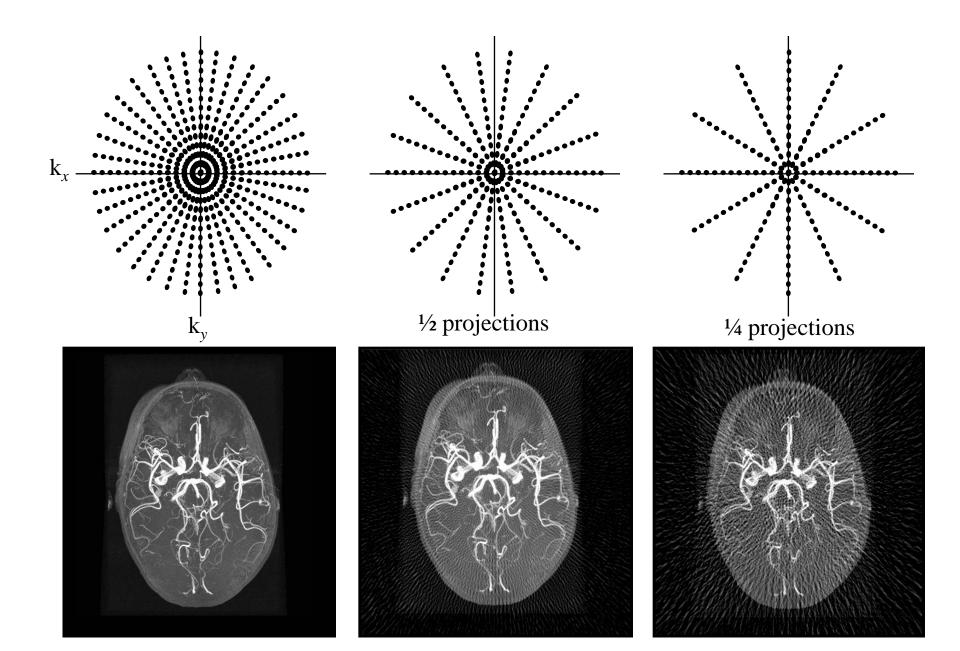
Undersampling (Rectilinear Acquisition)



k-Space Acquisition (Radial Sampling)



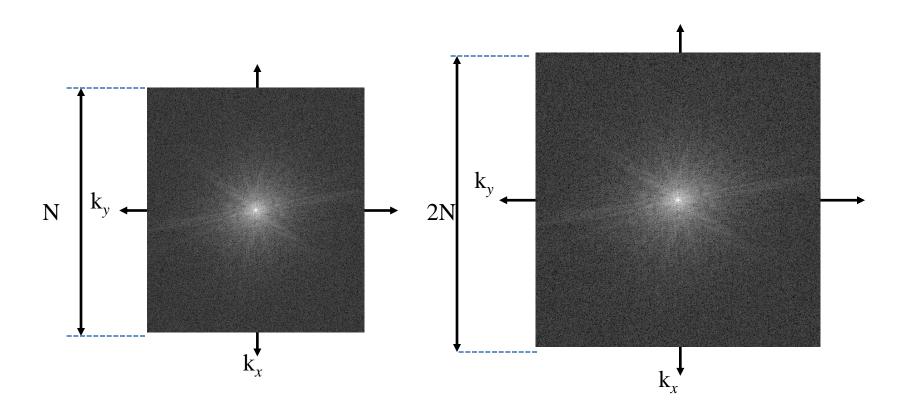
Accelerated 2D Radial Sampling



Trade-offs

- Image Resolution
- Signal to Noise ratio (SNR)
- Acquisition Time

Resolution Vs. Acquisition time



Double the resolution -> Double the time

SNR-When resolution is fixed

- Consider an Impulse object centered at origin
 - -Constant signal amplitude 'A' in k-space
 - -Each sample contains independent noise with variance σ^2

$$SNR = \frac{\sum_{j=1}^{N} A}{\sqrt{\sum_{j=1}^{N} \sigma_N^2}} = \frac{NA}{\sqrt{N\sigma_N^2}} = \frac{A\sqrt{N}}{\sigma_N}$$
 SNR obtained By simply adding samples

• The effect of signal averaging-SNR improvement

$$SNR = \frac{\sum_{j=1}^{N} 2A}{\sqrt{\sum_{j=1}^{N} 2\sigma_{N}^{2}}} = \frac{2NA}{\sqrt{2N\sigma_{N}^{2}}} = \frac{A\sqrt{2N}}{\sigma_{N}}$$

$$SNR \propto \sqrt{N_{avg}}$$

SNR-Accelerated scan-fixed resolution

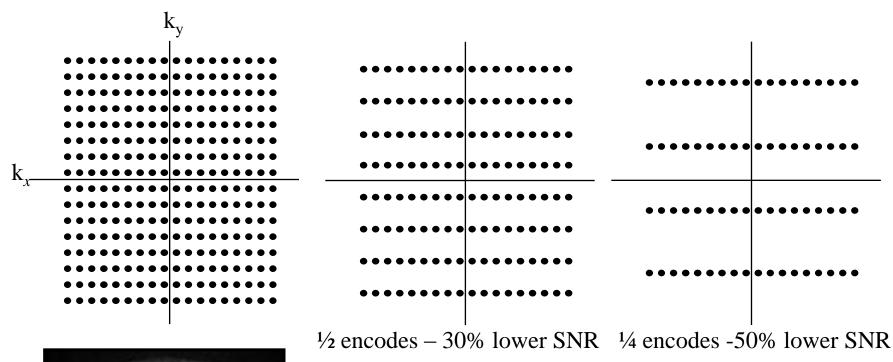
Acceleration factor of 2-collect N/2 samples

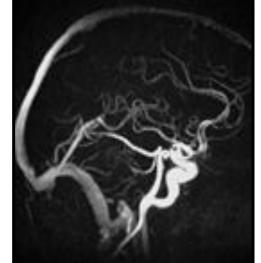
$$SNR = \frac{\sum_{j=1}^{N} A}{\sqrt{\sum_{j=1}^{N} \sigma_N^2}} = \frac{\frac{N}{2} A}{\sqrt{\frac{N}{2} \sigma_N^2}} = \frac{A}{\sigma_N} \sqrt{\frac{N}{2}}$$

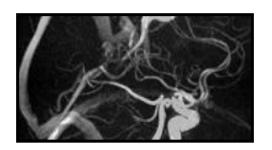
• In general- In an accelerated scan with image resolution fixed

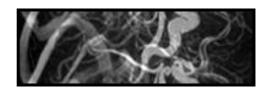
$$SNR \propto \frac{1}{\sqrt{R}}$$

Undersampling (Rectilinear Acquisition)

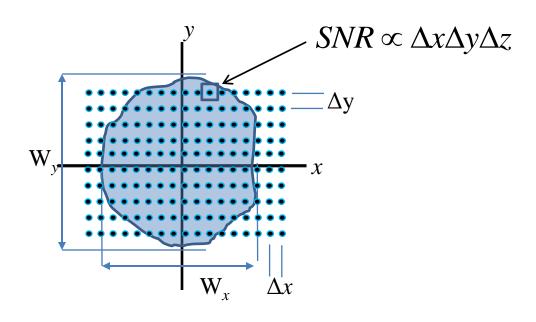








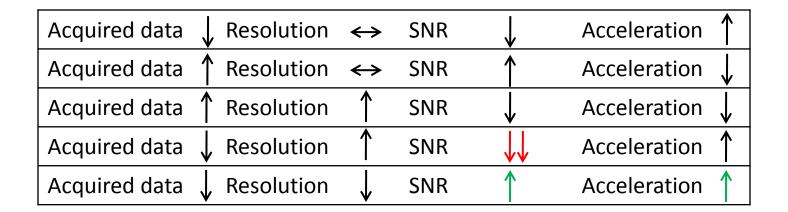
SNR -When Resolution is not fixed



$$SNR \propto \Delta x \Delta y \Delta z \sqrt{\frac{N}{R}} F(M(x, y, z), T1, T2)$$

SNR – Resolution Vs Acquired samples Vs Acceleration factor

To summarize...



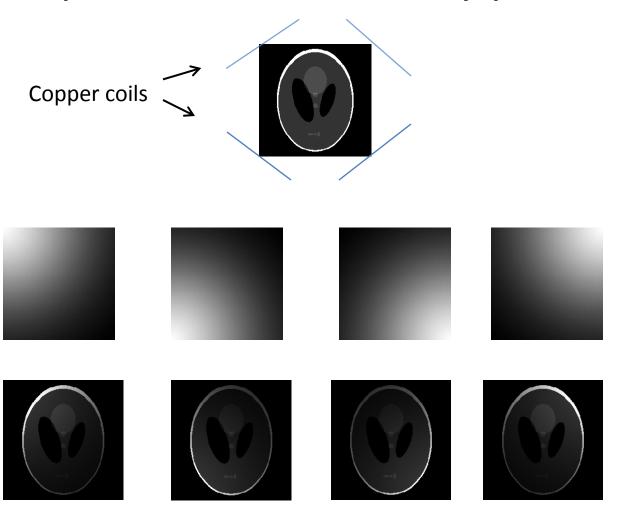
• Increasing intrinsic SNR can allow for greater acceleration factor

Parallel Imaging, Compressed Sensing and Aliased k-space acquisitions

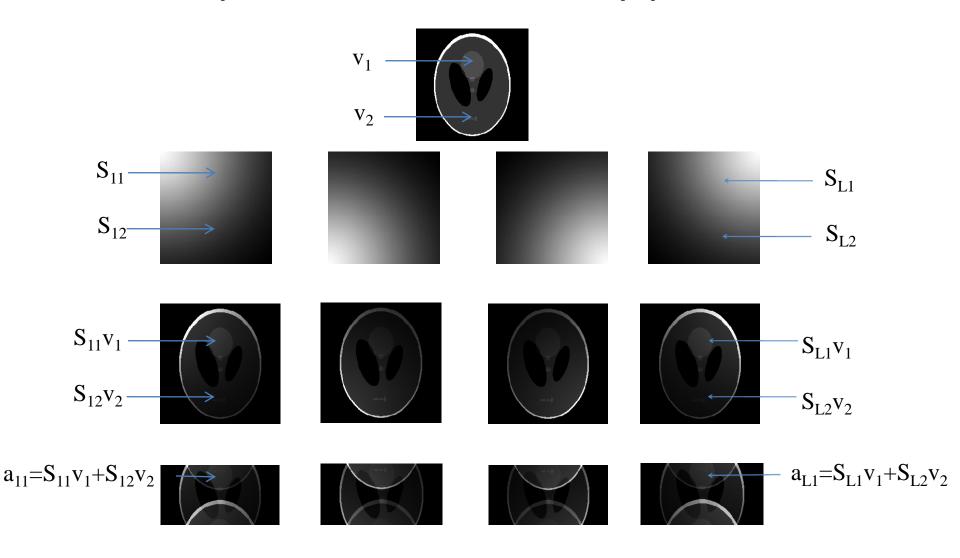
Parallel Imaging

Acquired data ↓ Resolution ↔	SNR ↓	Acceleration 1
Acquired data Resolution	SNR	, Acceleration ↑

Impact of coil sensitivity profiles



Impact of coil sensitivity profiles



Parallel Imaging-SENSE¹

$$S_{(\gamma,\rho)} = S_{\gamma}(r_{\rho})$$

 γ^{th} Receiver sensitivity value at the r_{p} location

$$U = \left(S^H S\right)^{-1} S^H$$

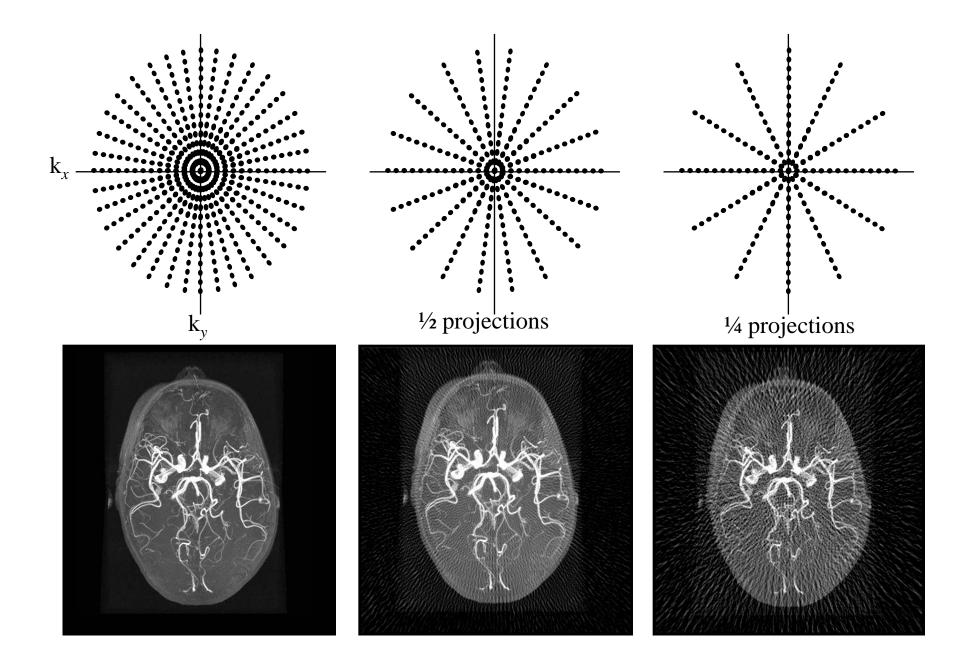
Matrix that can restore the original voxels

$$V = Ua$$

The equation to solve to restore original image

These equations work only for Rectilinear acquisitions!

What about for Radial Sampling?

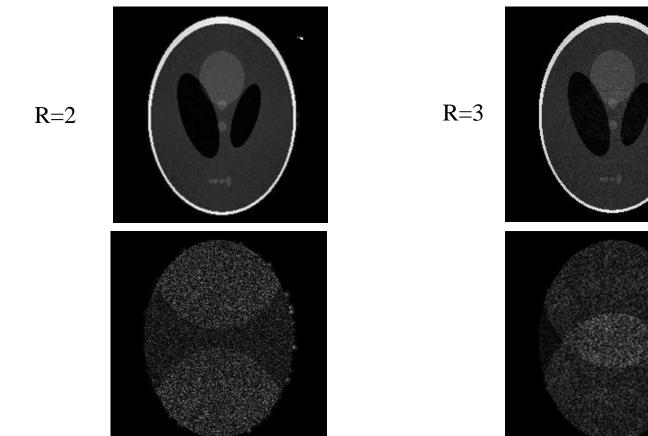


SENSE in more general terms..

Noise propagation in SENSE

• SNR loss during acquisition $SNR \propto \frac{1}{\sqrt{R}}$

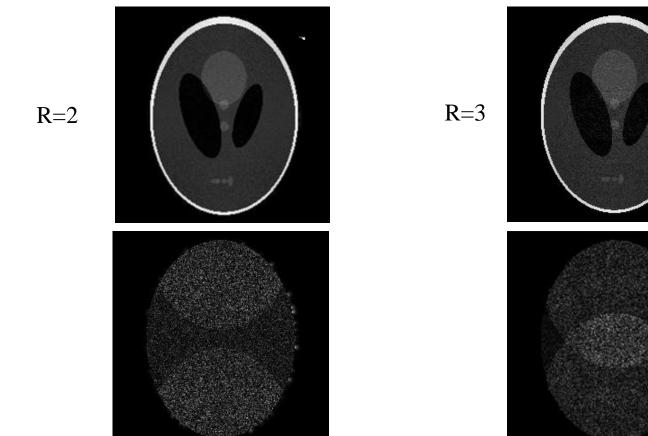
During reconstruction...



Noise propagation in SENSE

• SNR loss during acquisition $SNR \propto \frac{1}{\sqrt{R}}$

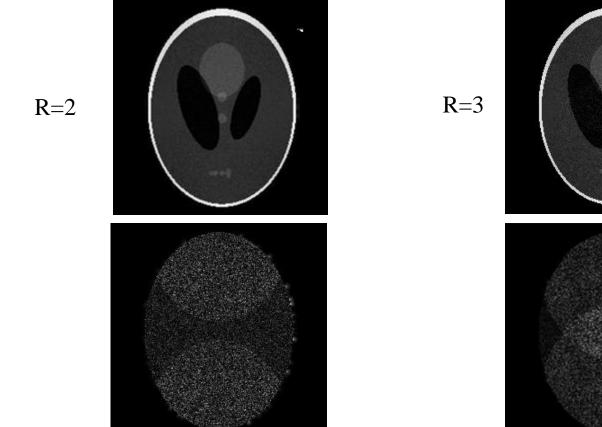
During reconstruction...



Noise propagation in SENSE

• SNR loss during acquisition $SNR \propto \frac{1}{\sqrt{R}}$

During rectilinear data reconstruction...



The noise propagation model

Noise in the
$$\gamma^{\text{th}}$$
 channel: $n_{\gamma}(t) = \sum_{\tau} \alpha_{\gamma,\tau} \xi_{\tau}(t)$ Modeled as weighted sum of individual noise sources

Noise variance in the ρ^{th} voxel in rectilinear acquisition:

$$\sigma_{\rho}^2 = \sum_{\tau} \sigma_{\tau}^2 \left| \sum_{l,k} U_{\rho,(l,k)} \alpha_{l,\tau} \right|^2$$
 and $U = \left(S^H S \right)^{-1} S^H$

Rearranging the variance equation, we get the following noise matrix (X):

$$X = U \psi U^H$$
 where $\psi_{l,l} = \sum_{\tau} \sigma_{\tau}^2 \alpha_{l,\tau} \alpha_{l,\tau}^*$

Substitute *U* to get the following: $X = (S^H \psi^{-1} S)^{-1}$

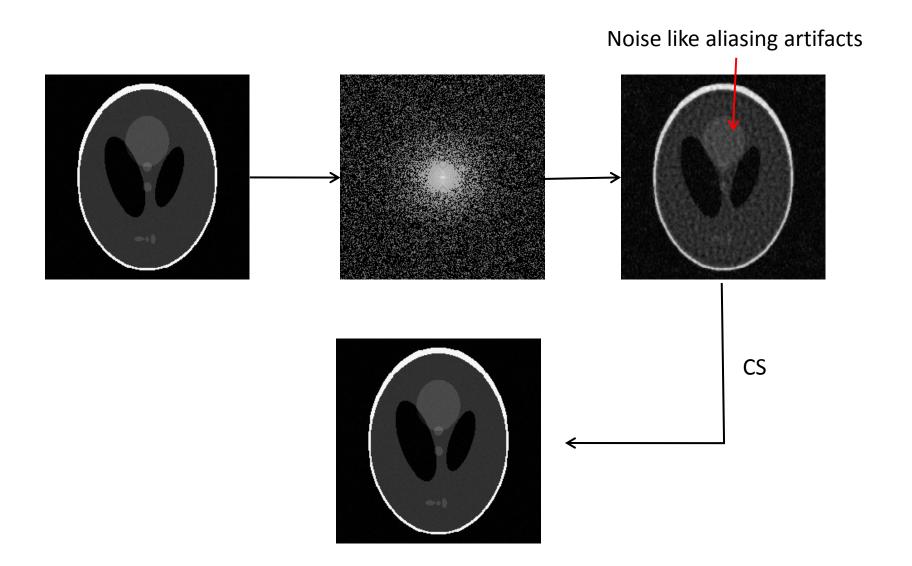
Limitations of Parallel Imaging

- Guaranteed SNR loss during acquisition and reconstruction
- Limits on the maximum acceleration
- Demanding Clinical applications need more acceleration

Compressive Sensing

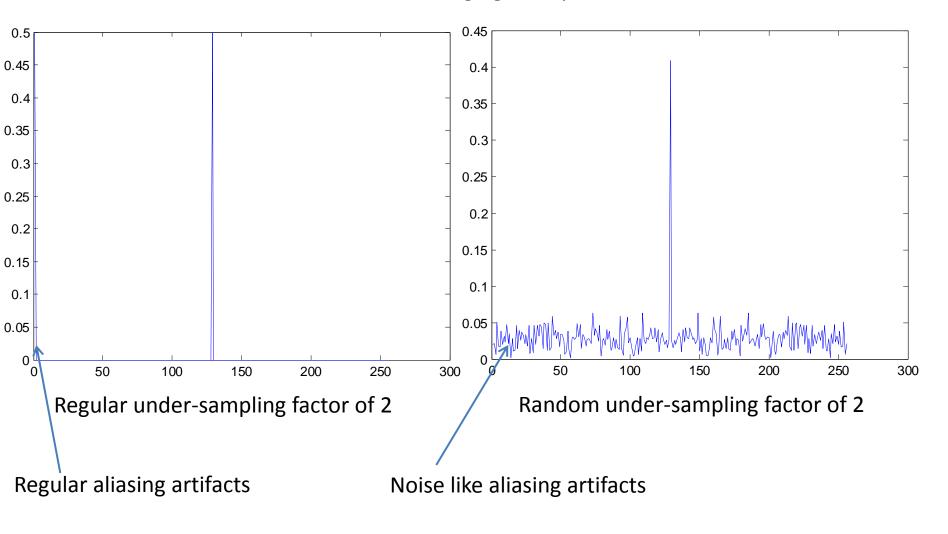
Acquired data ↓ Resolution ↔	SNR ↓	Acceleration 1
Acquired data Resolution	SNR	, Acceleration ↑

Compressed Sensing example



Idea behind random under-sampling?

1D Imaging example



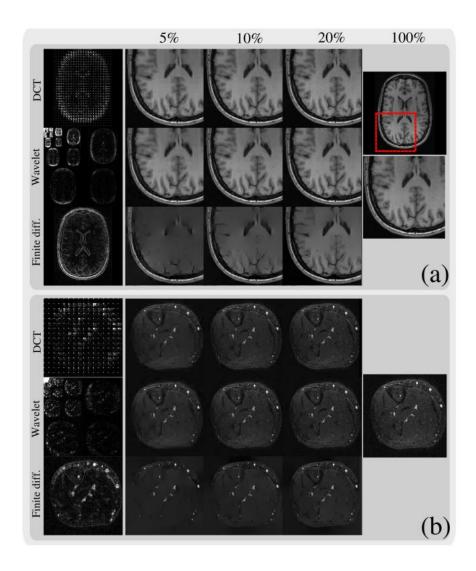
CS reconstruction framework

Minimize
$$\|\Psi v\|_{l1}$$
 Ψ -Sparse representation
$$\|Ev - m\|_{l2} \le \varepsilon$$
 Data consistency

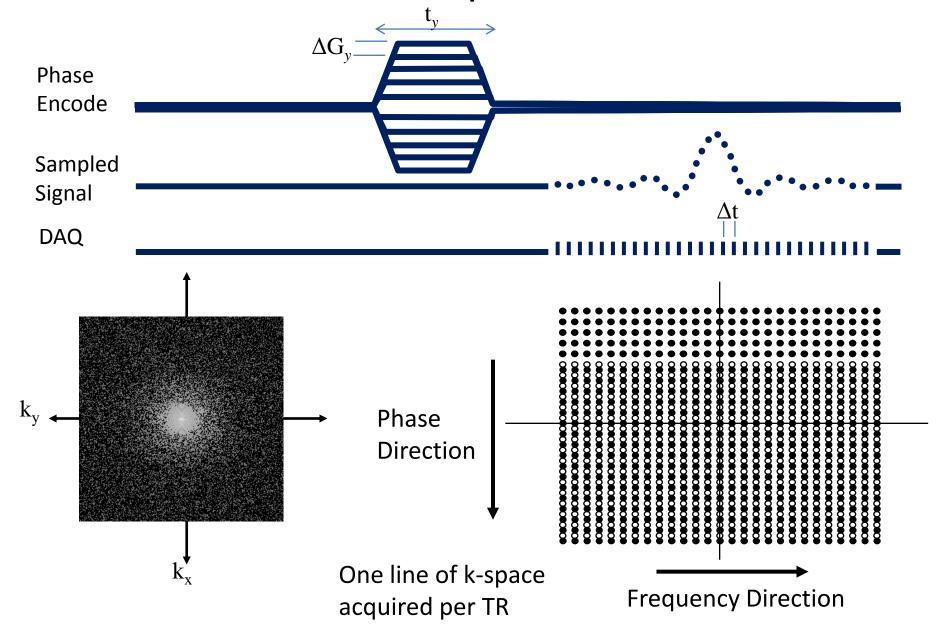
In MRI...TV transformation is always used..

Minimize
$$\|\Psi v\|_{l1} + \eta TV(v)$$
 TV-Total variation
s.t $\|Ev - m\|_{l2} \le \varepsilon$ Data consistency

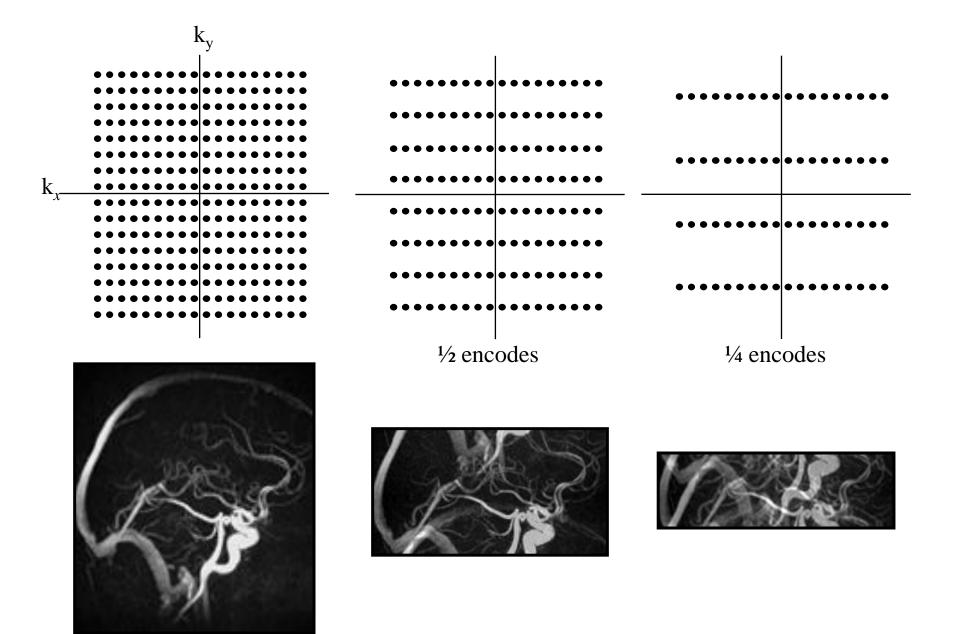
Sparse representation of MRI Images³



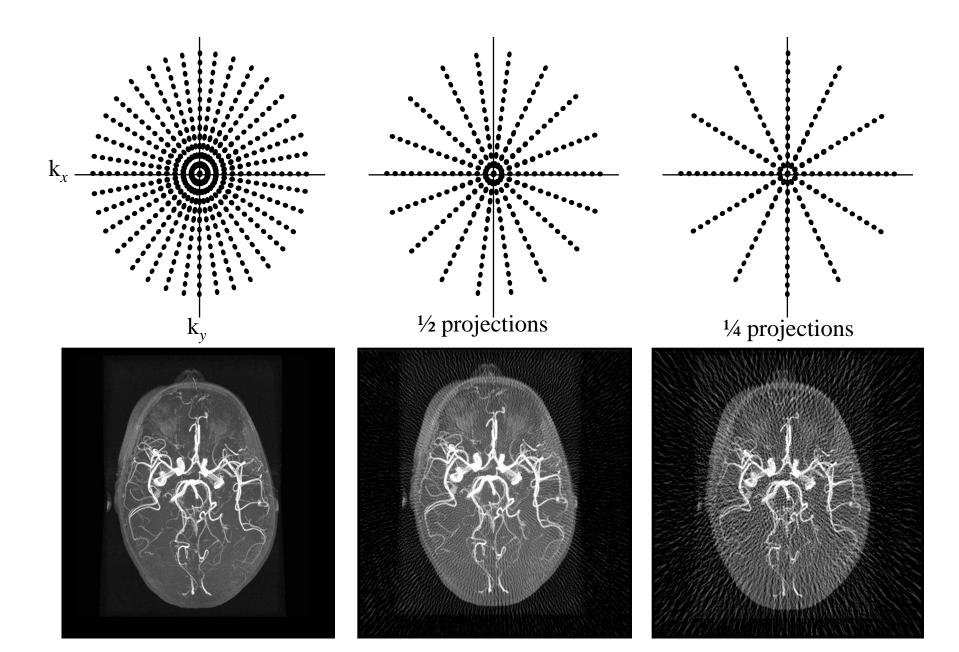
2D Rectilinear acquisition with CS?



Conventional Rectilinear undersampling?



What about for Radial Sampling?



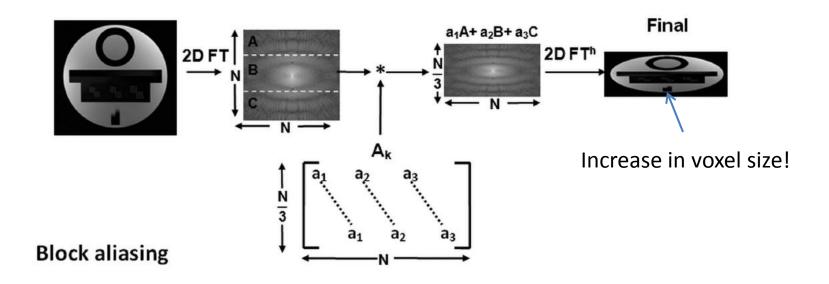
Limitations of Compressed Sensing

- Guaranteed SNR loss during acquisition
- Limits on the maximum acceleration
- Texture loss!
- Not applicable for all acquisitions (3D, Dynamic imaging most suitable)
- Compatibility with multi-receiver acquisitions not clear
- Visually improved or real restoration?

Aliased k-space acquisitions

Can resolution be restored during reconstruction?

An example of overlapping k-space⁴



- All data acquired through overlapping
- Acceleration achieved due to parallel acquisition of k-space data
- Acquisition SNR increase due to voxel size increase

Aliased k-space acquisitions

$$F(k_x,k_y) = \iint M(x,y) S_l(x,y) \Big(a_1 e^{-i2\pi k_{y1}y} + a_2 e^{-i2\pi k_{y2}y} + a_3 e^{-i2\pi k_{y3}y} \Big) e^{-i2\pi k_x x} dx dy$$

$$\downarrow \qquad \qquad \downarrow \qquad$$

SNR gain in "aliased" acquisitions

Consider an Impulse object centered at origin

$$SNR_{ref} = \frac{\sum_{j=1}^{N} A}{\sqrt{\sum_{j=1}^{N} \sigma_N^2}} = \frac{NA}{\sqrt{N\sigma_N^2}} = \frac{A\sqrt{N}}{\sigma_N}$$
 SNR obtained By simply adding samples

$$SNR_{k} = \frac{|A|\sqrt{a_{1}^{2} + a_{2}^{2} + a_{3}^{2}} \sqrt{N} \sqrt{3}}{\sigma_{N}}$$

$$\frac{SNR_k}{SNR_{ref}} = \sqrt{a_1^2 + a_2^2 + a_3^2} \sqrt{3}$$

Limitations of Aliased k-space acquisitions

- Poorly conditioned encoding matrix E
- Sensitive to coil geometry
- Required several receivers
- Increase TR duration

To summarize...

- Parallel Imaging in commercial scanners as a clinical imaging product
- Compressed Sensing work in progress...
- Aliased k-space acquisitions Undergoing clinical investigations...
- Use of receiver sensitivities proven technology
- Sparsity constraints unpredictable Sampling patterns need development